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Abstract-The experimental evidence of Pbreh and Cermak [l] of two zones of quasi-similarity in a 
plume diffusing from a line source at the wall of a developed turbulent layer is carefully examined for 
consistency with the concepts of eddy diffusivity. The quasi-similarity of mean temperature profiles 
within a developed turbulent layer some distance downstream from a step in wall temperature ob- 
served by Johnson [2a], [2c], is similarly analysed. It is concluded that eddy diffusivities when viewed 
as properties of quasi-similar fields can account for the observed characteristics of the layer de- 
veloping within another layer to the accuracy of observations. Some consequences of these concepts 

are explored. 

NOMENCLATURE 

instantaneous increment in concentra- 
tion from the mean; 
local skin friction coefficient; 
concentration; 
specific heat at constant pressure; 
one of the several thickness of the 
boundary layer ; 
dimensionless concentration, equation 
(SC) ; 
dimensionless temperature, equation 
(5); 
second approximation to dimensionless 
velocity; 
dimensionless stream function; 
integral defined in equation (12t) ; 
integral defined in equation (8~); 
heat conductivity; 
some measure of plume width; 
length of turbulent boundary layer 
upstream of the origin; 
inverse of the exponent in the power- 
law approximation of velocity profile, 
equation (11) ; 
Prandtl number ; 
turbulent Prandtl number, cu/ l t ; 
heat flux per unit area in y direction; 
Reynolds number ; 
correlation coefficient, ‘;;;id(F)z/(F); 

Stanton number, qw/pCPUeAT; 
mean temperature; 
TW - Te; 
instantaneous temperature fluctuation 
from the mean; 
instantaneous velocity fluctuation com- 
ponents in the horizontal stream direc- 
tion and the direction perpendicular to 
the wall; 
Prandtl’s friction velocity, 2/(~Jp); 
mean velocity component in the stream 
direction; 
mean velocity component perpendicular 
to the wall; 
distance downstream from the line 
source of ammonia or from the leading 
edge of heated plate; 
distance from the wall; 
dimensionless distance, yu,/v; 

shape indicator of concentration profiles 
d In G/d In A; 
measure of relative development of 
diffusive plumes and of boundary layer, 
d In d/d In A, dzh[dhz; 
d In 1,/d In A, equation (9); 
boundary layer thickness based on 
U/U@ = 0.99, or equivalent; 
laminar sublayer; 
displacement thickness; 
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“Clauser thickness”, approximately 
3.66; 
eddy-transport coefficient, equation (1) ; 
Y/e; 
Y/S or y/d; 
momentum thickness; 
diffusive plume scale, standardized so 
that at y = h, 50 per cent of change 
from wall to free stream values is 
effected; 
viscosity; 
kinematic viscosity, p/p; 
y/h or y/l; 
density; 
shear stress; 

72U’, Tw EU1. I 

Subscripts 
pertaining to outer edge of buffer layer; 
pertaining to (mass) concentration field; 
at edge of boundary layer, i.e. free stream 
values; 
pertaining to edge of laminar sublayer; 
pertaining to temperature field; 
pertaining to velocity field; 
wall value ; 
partial derivative with respect to x. 

Superscripts 
c), time average ; 
( )‘, derivative with respect to 5; 
( )*, derivative with respect to r]. 

INTRODUCTION 

THE PAPER, “Study of diffusion from a line 
source in a turbulent boundary layer”, by M. 
Poreh and J. E. Cermak [l] is particularly 
interesting because it documents two regions of 
quasi-similarity, designated as an intermediate 
zone and a final zone, in the growth of a diffu- 
sive field within an already well developed 
turbulent boundary layer [see Fig. l(a)]. An- 
other intriguing result is the apparent lack of 
dependence of the vertical scale of the diffusing 
plume on the free stream velocity. 

The final zone of quasi-similarity of [l] occurs 
when the diffusing ammonia gas has effectively 
spread over the whole turbulent layer so that the 
characteristic scales of the vertical and the 
ammonia concentration layers become com- 

mensurate and can be expected to develop hand 
in hand. The Poreh-Cermak measure of the 
relative development of these scales, /I =-: d In d/ 
d In 1, which otherwise is a function of distance,? 
p(x), then approaches unity. The intermediate 
zone of quasi-similarity corresponds to a region 
closer to the source, where the plume grows 
rapidly in a relatively slowly changing vertical 
layer so that /3 is relatively small, ranging from 
0.08 to 0.30 according to the experiments [l]. 

The wall being impermeable to the gas, the 
boundary conditions for this Dirac-like source 
problem differ: from those encountered in 
problems of heat diffusion from a wall with a 
Heaviside-like step in wall temperature (John- 
son [2], Reynolds, Kays, and Kline [3]). Still, 
both fields are scalar fields convected and con- 
torted by a pre-existent slowly developing tur- 
bulent field and are characterized by two scales, 
the individual plume widths, and the strengths 
of the gas source and of the temperature step, 
respectively. Johnson [2a, 2~1, who also had 
ample room for observation in his thick bound- 
ary layer, indeed noted the strong similarity of 
mean profiles between 25 to 30 and 60 to 65 in 
downstream from the step (see Fig. 2). The 
region corresponds to approximate d In 0/d In /\ 
values from 0.12 to 0.27, i.e. to an “intermediate 
zone”. Unfortunately, Johnson’s hot plate was 
not long enough to indicate the shift toward the 
expected final zone of quasi-similarity, some- 
times referred to as “isothermal” (Reynolds, 
Kays, and Kline [7], Elias [9]). The shift from 
Johnson’s profiles to the isothermal-plate pro- 
files indicated in Fig. 2, is substantial and 
undoubtedly significant. 

The present discussion is concerned with the 
consistency between these findings and concepts 
of eddy diffusivity and of the turbulent Schmidt 
or Prandtl number. The history of the turbulent 
field and of the diffusive field being strongly 
dissimilar, these concepts are subjected here to a 
particularly stringent and challenging test. In the 
analysis, the quasi-similarities will be postulated 
as empirical facts. However, the very use of the 

t Approximately, p = x/(x + L). 
$ In particular, in the ammonia case one cannot have 

recourse, without considerable sophistication, to con- 
cepts of local Reynolds analogy between the velocity and 
the scalar field near the wall. 
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FIG. l(a). Comparison of experimental and computed FIG. l(b). Comparison of experimental 
concentration profiles. concentration profiles. 

and computed 

prefix “quasi” is intended to emphasize that 
these similarities are no more “true” than that 
of the turbulent layer itself, a layer which possesses 
an inertial scale and a viscous scale developing at 
different rates. It will in fact be seen that the 
postulated similarity for the more sensitive wall- 
step case requires a decrease of eddy conduc- 
tivity from the inertially controlled turbulent 
level in the middle of the layer to the laminar 
level near the wall if the shape of the Johnson 
profiles of Fig. 2 is to be well approximated. The 
impermeability of the wall in the ammonia field 
decreases the sensitivity of the overall diffusion 
process to the viscous scale near the wall, 
making the inclusion of the “larninar sublayer” 
unnecessary. Incidentally, throughout the paper 
the traditional terminology of the laminar 
sublayer and of the buffer layer has been retained 
to indicate simply the wall regions where the 
molecular diffusivities dominate or are com- 
parable to local eddy diffusivities. The mole- 
cularly influenced domain of the law of the wall 
extends considerably farther outward. The 

turbulent structure in this domain is considered 
in the closing section of the paper. 

EDDY TRANSPORT AND TURBULENT 

PRANDTL NUMBER 

Concepts of eddy transport coefficients have 
been assessed critically by Corrsin, Townsend, 
Batchelor, and others, especially for free 
turbulent flows, and excellent reviews of the 
many facets of the problem were made readily 
available by Hinze [4] and Schubauer and Tchen 
[Sj. For monotonic velocity-temperature fields 
the hot-wire anemometer provides a direct 
means of evaluating the Boussinesq eddy co- 
efficients locally from the defining relationships : 

- 

I 
au -ar 

t2( = - uv 3;q=-tv ay 
I 

(1) 

The uncertainties in such determination of the 
diffusivities run on the order of f 10 per cent in 
very careful experiments and are somewhat 
reduced in the determination of the ratio 
EU/Pt = Prt, the turbulent Prandtl number, 



132 M. V. MORKOVIN 

I.0 r 
I, I I 

b 
6.75-f ._ -_ 

t 

1 F3Din 

.b 
v x=401n 
@X=Mln 

JOHNSON'S EXPERIMENTS [Za] 

Lh 
li 

l x i 59,n 

'i 
0 THEORY, SUELAYER~ATC~ ATx=30 in 

& 
---a THEORY, SUELAYER MATCH AT x-47 in 
- EXPERIMENT, ISOTHERMAL PLATE 

g 0.5 $ + LOCATlONOFyi~=0~2FOR CITED x _ 

ISOTHERMAL PLATE 

FIG. 2. Comparison of experimental and computed temperature profiles. 

because in forming the ratio some systematic 
errors cancel. Thus, in the interesting region, 
specifically, at x = 47 in, corresponding to the 
interme~ate zone of Poreh and Cermak, 
Johnson [Z] reports Prt rising from O-75 at the 
edge of the Karman buffer layer near the wall to 
a plateau of 1.08 within the warm (AhTmsX = 
15°C) plume and starting to decline near y/S = 
l-3, still inside the plume, before a sharp 
temperature intermittency appears in the middle 
of the turbulent velocity region (0.27 < y/S < 
0.65) and the smallness of the signals begins to 
impair the accuracy of the results. For velocity 
and temperature fields developed concurrently 
in presence of invariant wall conditions, Prt 
obtained by the hot-wire technique usually 
exhibits the rise near the wall and a plateau 
between 0.8 and 0.9 before the intermittent 
bulges of the outer layer are reached.? Should 

t In t~bulent jets and wakes somewhat smalfer Prt, 
0.6 to 0.7, are usually observed by the same techniques. 
The difference may be symptomatic of the deeper bulges 
(more widely spread intermittency) of free turbulent 
flows, ([5], p. 163, and of the more important role of the 
large eddies. 

the difference between the 1.08 plateau in the 
narrow plume of Johnson and the common 0.8 
to 0.9 plateau be significant, the eddy co- 
efficient et would exhibit dependence on the 
specific temperature field, which ought to have 
been erased in dividing -iZ by aTjay in equa- 
tion (1) in the case of a gradient transport 
controlled by the local kinematic field. 

The striking temperature inter~ttency ob- 
served by Johnson ([2b], Fig, 6) in the midst of a 
layer where there is no velocity intermittency (a 
basic finding which has not been accorded 
sufficient attention) testifies to the presence of 
contributions to overall transport by the large 
eddies, not generally considered consistent with 
the ideas of gradient transport. However, it has 
been pointed out by Liepmann [lo], that while 
the eddy-coefficient concept originated from a 
gradient-diffusion model, the resulting ex- 
pression [i.e. equation (l)] does not necessarily 
imply the specific mechanism. He calls attention 
to the fact that “process of collisionless diffusion 
of clouds into vacuum can be rigorously 
interpreted as a diffusion process of the gradient 
type with a diffusion coefficient proportional to 
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time, i.e. with precisely the same form of 
expression as used in Prandtl’s second formula- 
tion of the free turbulent exchange.” 

In equation (l), attention is focused on the 
transport of the incremental heat per unit 
volume, C,t, and of the incremental horizontal 
momentum per unit volume, U, by the lateral 
velocity fluctuations, ti. A hint of the mechanisms 
of transport can also be obtained from the 
correlation coefficient between the two trans- 
ported properties, namely R,t = z/z/(g). d(F) 
which is more easily measureable (i.e. with a 
single hot wire). Johnson’s Fig. 5 shows that 
Rut is negative and decreases steadily in abso- 
lute value with distance from the wall from about 
0.78 to O-6 before the temperature intermittency 
sets in. By taking spectra of Rut in the case of a 
high-speed insulated boundary layer, Mor- 
kovin ([I 11, Fig. 5) showed that the correlation 
can exceed O-9 for the largest eddies, that it 
decreases with eddy size, and that one could 
expect the correlation to be maintained across 
the whole layer in the low-speed cases of con- 
stant wall temperature, Such information points 
again to the transport role of the larger eddies. 

It will be seen that adoption of the hypothesis 
of equation (1) in the present case will lead to a 
generalization of Prandtl’s formulation referred 
to by Liepmann. Liepmann’s comment [lo] to 
the effect that he now feels that the pheno- 
menological approaches, if “recast and rein- 
terpreted in relation to recent results both in 
turbulence and in the theory of fluids, still have 
a future,” is also pertinent to the present difficult 
case of a layer within a layer. 

EDDY DIFPUSIVITY AS PROPERTY OF 

QUASI-SIMILAR FIELDS 

The present writer feels that the role of the 
large eddies has by now been so well documented 
(Townsend, Corrsin, Laufer, Klebanoff, Favre, 
Grant) that it is not particularly fruitful to 
attempt to visualize the details of the mechanism 
of interplay between the large eddies and the 
smaller ones in setting up formulae for eddy 
coefficients in the many cases where they appear 
to work. Rather one could expect that after a 
sufficient time (distance) of a sufficiently uniform 
development of the fields in question, the effects 
of the large eddies, in conjunction with smaller 

ones, would be also statistically smoothed out 
and a state of quasi-equilibrium or quasi- 
similarity reached, in which the average transport 
could behave as if due to eddy diffusivities, with 
expected departures in the proximity of walls and 
in the regions of intermittency. If so, existence of 
local quasi-similarity of mean profiles suggests 
sufficient uniformity of locally dominant average 
behavior and hence the possible usefulness of 
eddy coefficients and their possible relations to 
the usually non-constant characteristic scales of 
the developing fields. 

It was the similarity afforded by the velocity 
defect law in otherwise non-self-preserving 
turbulent boundary layers that prompted 
Clauser [q to document the applicability of the 
eddy viscosity concept to the outer 80 to 90 per 
cent of layers with constant pressure and with 
equilibrium pressure gradients. The useful, 
though rather neglected, result, namely 

Q&X) = 0.018 U,S* = 0.018 zr,A (2) 

displays the dependence upon the local character- 
istic scales Ue and 6* observed from the outer 
“potential” flow on one hand, and on the 
combination of an inner scale, u.+, and an 
overall inertial scale A, on the other. Encouraged 
by this success, let us pursue the possibility that 
the quasi-similarities observed by Poreh and 
Cermak and by Johnson may lead to useful 
eddy coefficients, within the accuracy of the 
observations. 

At the outset, we should not expect to obtain 
results comparable in their validity to that of 
equation (2) because, as Poreh and Cermak ob- 
serve, their similarities are at best asymptotic, and 
because in the intermediate zone the influence 
of the viscous sublayer could remain strong. In 
fact, this influence vitiates the asymptotic 
similarityt of the initial zone, which is present 
in comparable experiments in free turbulent 

t There could possibly be a hidden initial-zone 
similarity based on molecular parameters similar to u* 
and y* of the law of the wall. A hint of such a similarity 
exists in Johnson’s measurements for x Q 20 in, but un- 
certainty in the local values of the Stanton number and 
skin friction coefficient precludes any definite conclusions. 
There was also scattered evidence of changes of the viscous 
layer thickness due to heating, even of possible buoyancy 
effects in this region of low velocity. 
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Llows, e.g. Hinze ([4], p. 351). The region near the 
wall also exhibits larger scatter of the “carrier” 
velocity field-see Poreh and Cermak’s Fig. 2, 
where many of the profiles in the intermediate 
zone could be more closely approximated by 
l/6 power law. We also observe larger depar- 
tures of the individual profiles from the “mean” 
similarity profile in Figs. 5 and 10 of Poreh and 
Cermak [ 11, or in our Fig. 1, in the regions near 
the wall and near the edge of the plume, and 
we should expect the eddy-diffusivity concept to 
lead to no better consistency. Similar statements 
hold for the velocity and temperature profiles 
of Johnson, e.g. our Fig. 2. In particular the 
experimental profiles of Poreh-Cermak appear 
to approach the wall with a non-zero slope, not 
appropriate to impermeable walls, and we can 
expect a sharp curvature of the profiles at the 
edge of the viscous sublayer, reminiscent of the 
bends in the temperature profiles at insulated 
walls (leading to recovery factors near 0.9 in 
air). 

SOME CONSEQUENCES OF QUASI-SIMILARITY 

The flow being incompressible, there exists a 
mean stream function #(x, v), which in the 
inertially controlled region of similarity of a 
turbulent boundary layer should be expressible 
in terms of the characteristic scales U, and d 
(an appropriate thickness) : 

4”(x, r> = d(x) H ($1; &) = 7 (3) 

so that 

U(x, Y) - - = H*(T), w Y) 

(it? 
pm-=-d,[H--H*] (4) u 

e 

where the subscript x and superscript ( )* denote 
differentiation with respect to x and 7, re- 
spectively. In regions where the diffusive field is 
self-similar, Poreh and Cermak expressed the 
concentration profiles as 

C(x, Y) = G(x).M); E = j& (5c) 

where further specification of the vertical scale 
of the plume, I(x), may be delayed so that the 
equations remain applicable to both the inter- 
mediate and final zones. Using the Poreh- 
Cermak indicator of the relative growth of the 

velocity and the diffusive boundary layers, 
fl = d(ln d)/d(ln 1), and introducing a shape indi- 
cator of the diffusive profiles, a = d(ln &)/d(ln 1). 
the differential equation for the conservation of 
mass of ammonia, 

ac S(UC) a( VC) ug--_ I$ =-Fx--+TF- = 

specializes to 

P?7 H**S + ii !dpfH - d& H*f :] = 

I 

} (7(,) 

When we assume that the similarity is valid 
across the whole layer? (including the sublayer), 
and integrate equation (7~) across it, applying 
the conditions of impermeability at the wall. 
and then integrate with respect to x, we obtain 
the overall conservation condition equation (12) 
of Poreh and Cermak : 

U, C&x) Z(x) I,(x) = G = const; 

The flux integral Z,(x) displays the basic 
mathematical difficulty in treating fields with 
two distinct similarity variables. Nevertheless, 
equation (SC), logarithmically redifferentiated, 
provides a simple basic constraint on the rate of 
evolution of the concentration field : 

dInI, 
l+a+y=O;y=~~l~l (9) 

f For the impermeable wall, the assumption of simi- 
larity at the wall is actually mild, because the possible 
non-similar contribution to the,growth of the functionf([) 

intheviscouslayer($),(,y ($j,,,Z/2 . . ..mustbe 

vanishes according to the boundary 

according to left side of equation 

(I&), i.e. as U and V approach zero. 
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When x measures the distance from the line 
source of ammonia, the experimental results of 
Poreh and Cermak indicate that Cw -x-s‘s*, 
I N x0.81, and hence a = - $, y = +, in the 
intermediate zone, and Cw I N x0, a=-1, 
y = 0, in the final zone. The relative intluence of 
the dependence on x of the flux integral Zc is 
thus seen to be slight, corresponding to a change 
of y from 4 to zero during the part of the 
development of the diffusion layer under 
scrutiny. 

The nearly self-similar velocity field is 
governed by a single differential equation of 
conservation of horizontal momentum, parallel 
in content to equation (7~) 

Recognizing that the similarity equation (3) was 
to be expected only in the outer inertial region 
of the boundary layer, Clauser [q solved equa- 
tion (10) with judicious handling of the inner 
boundary conditions, approximating those seen 
by the fully turbulent fluid, derived equation (2) 
and documented the sense in which the Boussin- 
esq approximation, indicated on the right of 
equation (lo), could be considered valid in 
turbulent boundary layers with equilibrium 
pressure gradients. 

An approximation to these profiles is given 
by the power law profiles 

(11) 
It should be understood that this approxima- 
tionf conceals a slow dependence on x (or Re,) 
in n, and gives a deceptive impression of posses- 
sing full similarity in the wall region and of 

j Note that the only power allowed by the strict 
similarity equation (11) for the velocity profiles is -1, 
and yet we know how useful powers like + to + can be, 
with proper interpretation; see Hinze [4], pp. 481 
to 482). Note also, that the approximating form enters 
essentially as a weighting function, the result to be inte- 
grated, i.e. smoothed. In such an operation the overall 
shape rather than the local values are important. 

satisfying the boundary conditions at the wall, 
where it yields an infinite shear. Nevertheless, 
with judicious handling of these inner conditions, 
they can be very useful, even though they lead to 
occasional inconsistencies because of their over- 
determinacy. Poreh and Cermak recognized that 
the power-law is the functional form that can 
overcome the mathematical difficulties caused 
by the double similarity in the present problem. 
Thus, in our formulation the integral Ze(x) 
becomes separable and equations (SC) and (9~) 
become 

Zc(X) = (-$y j Pf(5) d5; Y =;U - F) 
0 

This approximation thus predicts a shift in y 
from & or + in the intermediate zone (/3 small), 
to zero in the final zone 0s = l), as compared 
to the experimentally indicated shift from Q to 
zero. This agreement is nearly within the ex- 
perimental accuracy, a new and encouraging 
result. 

Returning to the basic differential equation 
(7c), we must make an additional assumption 
relating the turbulent mass flux E to the mean 
fields of C and U. We explore the feasibility of 
using the eddy coefficient, rc, which could 
depend on both x and 5, namely 

- z = EC (x, 6): = EC (x, 5) +g f’(5) 

(13) 

and, neglecting again the small viscous contri- 
butions near the wall, we obtain: 

- uel,d(x)f(t)?p+l)~n (1 -Z) 

= EC& E)f,(O (14c) 

Before proceeding further, it is instructive to 
consider the differences brought about by the 
changes of boundary conditions from those of 
Poreh-Cermak to those of Johnson. The corre- 
sponding equations are designated by the 
subscripts C and t, respectively. For the tempera- 
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ture field with a fixed step AT in the wall 
temperature at x = 0, they are: 

When the additional eddy coefficient hypo- 
thesis, equation (l), is made, the basic differential 
equation (6t) takes the form 

z= 
1 

ez 
ay (6t) 

The term in the bracket of equation (8t) has 
the dimensions of a length and has been called 
the convection thickness of a thermal boundary 
layer by Eckert [12]. It is proportionalt to the 
plume scale I(x) only in the final zone where 1t 
approaches a constant as l/d approaches a 
constant. 

The permeability of the wall to heat brings 
forth the non-vanishing value of the local 
Stanton number, and equations (9) and (12) are 
replaced by 

1% (i)l’“itT (1 -A) = St(x); 

it = 7 [r/n g(t) dt = const. (12t) 
0 

The experimental check here is of necessity 
less positive than in the ammonia diffusion case Another degree of freedom remains in our 
because the local heat-transfer rate qw(x) was definitions as can be easily verified from equa- 
not measured directly and because the derivative tion (17~). Uniform stretching of the plume 
of an empirically inferred length, namely L, scale from Z(x) to cl(x) changes the functions 
always generates errors. All one can state EC and f, but the solution remains similar and 
definitely is that there are no clear inconsistencies still satisfies the differential equations and the 
between the Stanton number variation inferred boundary conditions. Hereafter, we shall follow 
by Johnson and that based on equation (12t), Poreh and Cermak and call h(x) that specific 
where similarity is assumed (without the eddy- plume scale for which f is reduced to 0.5 when 
coefficient hypothesis). y = h, i.e. f(l) = 0.5. 

Dimensional arguments convince us that 
ccl(x) must be proportional to the product of a 
characteristic velocity and characteristic length 
associated with the diffusive field. The natural 
characteristic length scale for the ammonia 

t Johnson’s identification of the similarity length with 
the convection thickness ([2b], Fig. 12), was a slip. In 
our Fig. 2, the similarity scale was worked our directly 
from original data and normalized so that 50 per cent 
of the T drop occurred in one scale length from the wall. 

[4x, 0 g’(~~l’ (14) 

The validity of the combined assumptions near 
the wall will be discussed later. 

DEPENDENCE ON EDDY DIFFLJSIVITY ON x 

Since the right side of equation (14c), divided 
by EC, is a pure function of E, strict similarity 
combined with eddy coefficient hypothesis 
would imply that EC must be separable into a 
product and must cancel out the x dependence 
on the left side. We find that EC can indeed be 
split, say into ccl(x) w(E), so that 

Inasmuch as the split involves an arbitrary 
multiplicative constant, we may set both sides 
of equation (15~) equal to - 1, and proceed to 
obtain 
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problem is l(x), which in the intermediate and ~00-~~~~ , 

final zones specializes to X(x) and const - 6(x) of 
Poreh and Cermak.? The candidates for the 
velocity scale are Ue, a constant, and 
u* = Ue l/(cf/2), a slowly varying function of x 250_____~~ : 

(roughly 

- U,IL/IZ+~ a-ll(n-1) - U,n+Zln+3 (x + L)-l/n+3 

according to Hinze ([4], p. 476)). In the inter- 
mediate zone, /?/(n + 1) is still small in comparison 
with unity, and, to the same approximation, 
d[+x)] and l/(c//2) are constant, so that ‘fz’~I 150 ~~~~~ ~~~ 
equation (16~) leads to h - xfi’n+l. The ex- 
ponent n/(n + 1) has the values of O-858 and 
0.875 for n = 6 and 7, respectively, as com- 
pared to 0.81 observed experimentally by 
Poreh and Cermak. The choice of Ue for the 
velocity scale makes h altogether independent 
of the ambient velocity, and the choice of U* very 
nearly so, a probably significant agreement with 
the experiment. In the final zone, where /3 + 1, 
equation (16~) yields h -x + const. and 
h - xfi+lJn+2 + const., for the two choices of the 
velocity scale. These exponents are also some- 
what higher than those which can be gleaned 
from Fig. 3 of [l]. Similarly, the results for both 
zones, combined with equations (9) and (12c), 
lead to a steady decline of the maximum 
concentration G(x) some 5 to 10 per cent 
faster than the experimental values. Whether 
the cited relatively small discrepancies in the 
exponents indicate that a diffusion thickness 
more appropriate than h (or 6 in the final zone) 
is to be sought is not clear, but they appear 
unavoidable when the somewhat restrictive 
power law is used. Similar minor uncertainties 
exist in the interpretation of Johnson’s ex- 
periments for step-heating, pa], whether one 
uses a dimensional argument or the Reynolds 
analogy at the wall in the intermediate zone. 
There, the lack of direct measurement of qw and 
cf provides little opportunity to test the theo- 

t We note that in the step-heating case, Eckert’s 
convection thickness, Z(f/d)‘” it, is also available, but it 
does not seem to offer any advantages. In the final zone 
the convection thickness is proportional to h which is, 
in turn, proportional to 6. In these scalar transport cases, 
the equations are linear in C or T, and the variety of 
meaningful scales is less than for vertical layers (6, 6*, 0). 

3.0 4.0 

FIG. 3. Eddy conductivity variation near the wall. 

retical results for the x variations against 
experiment. 

In the step-heating case, equation (14t) leads 
us again to the separability of the eddy coefficient, 
E~(x, 6) = E&X) l t2(f), so that the equivalent of 
equation (15~) becomes 

-“‘“(;)l’n(l _A-) = 
W(X) 

{‘:$;;$y} ($&) Wt) 

Comparison of the role of the terms in the 
braces in equations (1st) and (15~) shows us that 
mathematically, it is the lateral development of 
dimensionless heat flux, et&) g’(c), which corre- 
sponds not to the lateral development of mass 
flux but to that of the dimensionless concentra- 
tionf(5) itself. This reflects the aforementioned 
Heaviside-like and Dirac-like characteristics of 
the two diffusion problems. Setting both sides 
of equation (1st) equal to - 1 again, we obtain 
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W(X) = UC? 112 (-j)li”(* -&); 
ct(x, E) = W(X) l 2(f) (W 

The plume scale can be standardized again to 
X(x) such that g(Z) = 0.5, Fig. 2. The quantity 
Q is proportional to the heat flux at the wall; 
in fact, utilizing the properties of the differential 
equation one can show the relation to equation 
(12t) to be Q = it (n + 1)/n. It is the non-zero value 
of Q and the consequent second integration in 
equation (17t) which makes the step-heating case 
much more sensitive to the wall conditions and 
to the finer variations of the still undetermined 
function Et&$) than the ammonia diffusion case. 

The second approximation to the dimension- 
less longitudinal momentum per unit volume, 
i.e. to U/Ue, bears strong resemblance to the 
approximate similarity solution for the di- 
mensionless increase in heat per unit volume, 
g(5), in the final zone (where approximate 
validity of Reynolds analogy can be expected). 
This approximation represents a second step 
in a fast-converging iteration process, operating 
on the basic momentum equation (10). Specifi- 
cally, we retain the first power-law approxima- 
tion HI(~) = #n+r)ln n/(n + 1) for the weighting 
undifferentiated factor on the left side of 
equation (10) and treat the H derivatives as 
pertaining to the unknown second approxima- 
tion, setting HZ**(~) = h*(v). The results are to 
be compared to the solutions for concentration 
and temperature : 

<%1(x) = Ue dz d w . 
n+ 1’ 

4x, 7) = d4 m(7) (16,) 

The constant, 7aw, analogous to Q, is propor- 
tional to the shear at the wall, 

The second approximations equation (17,) 
differs from the family of solutions of equation 
(10) of Clauser [6] which collapsed into a 
narrow quasi-similar band around the empirical 
defect-law profile, (Ue - U)/u, versus 7 for 
7 > 0.15 or so, and which led to the expression 
for eddy viscosity,t equation (2). Rather, the 
approximations of equation (17J represent a 
refinement of the spirit and results of the power- 
laws, utilizing a single characteristic length across 
the complete layer. As such, their validity is likely 
to be restricted to narrower ranges of the x 
variable, but they should be adequate for 
comparison with the diffusion profiles in the 
rather narrow intermediate zone of quasi- 
similarity. 

DEPENDENCE ON EDDY DIFFUSIVITY ON y 

The ultimate test of the suitability of eddy 
diffusivity is, of course, the degree to which it 

t There is little doubt that Clauser’s fit to the experi- 
mental curves could be improved by making cZC depend 
on y in order to account for the intermittency. Since the 
intermittency curves appear to scale with the inertial 
characteristic length 6, this refinement would follow the 
philosophy of the original investigation. 
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predicts the observed concentration profiles. 
Specifically, are there rational choices of l 2(49 

in equation (17~) and of E&) in equation (17t) 
which yield acceptable approximations to the 
experimental profiles of Poreh and Cermak in 
Fig. (la) and of Johnson in Fig. 2, respectively ? 
Furthermore, do such choices bear a physically 
sensible relation to a choice of the eddy vis- 
cosity variation ~~~(17) in equation (17,), which 
would yield a satisfactory match to the velocity 
profiles ? 

These questions are answered in the aEr- 
mative and the lessons learned about the effects 
on the “eddy mixing intensity” arriving at the 
matching mean profiles are discussed in great 
detail on pp. 22-37 and in the Appendix of 
[13], available from the author. Briefly, one’s 
first inclination to solve for r&9 in terms of the 
profiles and their derivatives and to utilize the 
experimental data for the evaluation of &9 
founders on excessive scatter of the results. 
Instead, one is forced to an inverse procedure of 
trial-and-error estimates of l 2(.$), to numerical 
evaluation of equations (4) (which smooths out 
the effect of errors in the estimates), and to 
comparisons of the result with experimental 
data. Fortunately, it turns out that the tedious 
procedure is sweetened by the consequent 
appreciation for the contributions of the various 
segments of the layer (e.g. the so-called laminar 
sublayer, the Karman buffer layer, and the outer 
intermittent layer) to the impedance they offer 
to the transport of the scalar property in 
question. 

However, because of the presence of integrals 
across the whole layer, like that in Q of equation 
(17t), the absolute values do not emerge until 
the completion of the computations. It was 
therefore a pleasant surprise, when the E% values, 
corresponding to the profiles in Fig. 5, turned 
out to check well with those of other investi- 
gators in Fig. 4. For computational simplicity 
five analytical segments were used: ~2 = al in 
the laminar sublayer; ~2 = a + bv2+(1/@ in the 
“buffer layer” ; 62 = +/K for 7) up to 0.2, 
corresponding roughly to the logarithmic regime; 
~2 = /3* for the inertially controlled layer 
and ~2 = A/++5 for a crude approximation of 
the intermittency drop-off. Adequate matching 
of the velocity profiles in Fig. 5 required the 

utilizationof allfive regionsinspiteof the smooth- 
ing effect brought about by the integrations. 

Johnson’s temperature profiles were deter- 
mined primarily by the transport conditions 
within 7 < 0.2, i.e. by wall effects, so that only 
the inner three segments were in order. In the 
belief that the turbulent velocity field determines 
the heights r) at which the mode of the heat 
transfer changes, an attempt was made to fit the 
temperature profiles by keeping the same 71 
boundaries for the three layers and the same 
analytical form (but not magnitudes) of the 
corresponding ~2 variations as in the velocity case. 

The results shown in Fig. 2 indicate that this 
intuitive assumption on the spatial variation of 
the mixing mechanism was successful. The 
relative amplitudes of the eddy coefficients, 
•~2 and rt2 of course, change, and with them 
changes the local Prandtl number. On this basis, 
local Prandtl-number values in excess of unity 
should be reached in the early stages of the 
intermediate zone. 

In the process of the successive adjustment of 
the viscous sublayer thickness as appeared 
dictated by the requirement of the matching of 
the mean profiles, the puzzling absence of a 
viscous parameter was clarified. In Fig. 3, the 
eddy coefficients, as would be required within the 
present framework by the proper growth of the 
sublayer between stations x = 30 in and 
x = 47 in are shown. The integrated effect of the 
impedance l/~t2 across the two inner layers 
[see equation (17t)] turns out to be very nearly 
the same as can also be judged from the corre- 
sponding points in Fig. 2. 

Thus, what a strict similarity would require 
to be a single function, E&), appears instead as 
a family of functions varying within a band near 
the wall. The corresponding mean temperature 
profiles also fall into a narrow band, and so do 
the experimental profiles-rhe band of quasi- 
simi1urity.t This study thus leads to a better 

t Such “narrow-band similarity” at last endows the 
rather vague term of quasi-similarity in the Introduction 
with a more concrete meaning. Mathematical justifica- 
tions for approximate validity of solutions (17c), (17,) 
and (17,) must rest on the relative smallness of the 
departures from strict similarity and of their rate of 
change with respect to x. The widely used concept of 
“local similarity” of laminar, especially hypersonic, 
boundary layers relies on similar arguments. 
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understanding of what similarity, inferred from 
empirical data, may mean in more general cases. 

As pointed out, the ammonia concentration 
profiles were expected to display little sensitivity 
to the viscous layer near the wall on theoretical 
grounds and accounting for the sublayer and the 
buffer layer was indeed found unnecessary. The 
shift in the mean profiles due to the inclusion of 
these layers was less than the experimental 
scatter. The blockage at the wall, however, 
makes the C(X, Y) profiles extend readily past 
the height 7 = 0.2 into the inertially controlled 
regime and lose strict similarity on that account. 
[The heights v = 0.2 at the beginning and end 
of the intermediate zone are shown in Fig. l(b).] 
Again, there is a band of quasi-similarity within 
which both the experimental and the theoretical 
profiles fall, with either ,6 or h/S in the role of a 
weak parameter. The examples in Fig. l(b) 
illustrate the theoretical shift of the profiles in 
the intermediate similarity zone from the fully 
wall-governed profile, to the profile where 
“inertial cut-off” sets in at Y = h, and to the 
extreme case of cut-off at Y = 0.6A, designated 
by symbols +, A, and x , respectively. 

As the ammonia plume penetrates deeper into 
the boundary layer, and approaches the final 
similarity zone, the sensitivity of the diffusivity 
model to the conditions near the wall decreases 
still further so that the assumption of constant E 
across the whole boundary layer suffices for 
good results [Fig. l(a)]. Reasonable assumptions 
of intermittency cut-off (not shown) improve the 
match with experimental results somewhat. 

FINAL RESULTS AND DISCUSSION 

When we combine the information developed 
piecemeal in the preceding sections we arrive at 
the overall representation of the diffusivities : 

(20) 
In particular, in the intermediate zone of 

similarity of Poreh-Cermak, characterized by 
the experimental data:7 O-15 < X/6 < 0.36; 
0.08 < /3 < 0.3; h - x0.8+ (independently of 

t The lower limits of h/6 and fl may be smaller; profiles 
at the indicated limits were already similar. 

Ue); c, -x-o++; the function ECZ can be 
approximated by expressions such as 0.96 (v/h)213 
of Fig. l(a) or 1.03 (~/A)~.75 of Fig. l(b), with a 
slowly varying cut-off and plateau values, when 
appropriate. (Within the experimental band of 
similarity, the profiles corresponding to the 
truncated distribution of the diffusivity could 
also be approximated with slowly decreasing 
exponents p, e.g. as low as 0.4: ~ca = O-83 
(Y/h)“.4; g(5) = exp [-0.693 $+I.) Physically, 
the source was ‘located at an approximate 
distance L = 340 in downstream of the 
effective origin of the turbulent layer, and the 
intermediate zone extended to about 150 in 
downstream of the source. 

The final zone, of Poreh and Cermak corre- 
sponded to h/6 M 0.64 ; /3 w 0.8 - 1; Cw6 = 
constant; and cca(y/X) = 0.67 except for a 
near-Gaussian correction factor for the effect of 
turbulence intermittency for y/h > 0.9. The 
ammonia source was located at an approximate 
distance L = 125 in downstream of the effective 
start of the turbulent layer, and the final zone 
was reached about 400 to 500 in downstream of 
the source. 

The intermediate zone of similarity of Johnson 
extended from 25-30 in to 60-65 in downstream 
of the leading edge of the heated plate, which in 
turn was located at an approximate distance 
L = 168 in downstream of the effective origin 
of the turbulent boundary layer. It corresponded 
approximately to 0.055 < h/0 < 0.95; 0.12 < 
d In B/d In )r < 0.27; h S=Z 0.00205 ~0.7~; and to 
the diffusivity function E~Z displayed in Fig. 3. 
In general, this function changes slowly with x 
as the E values corresponding to the edges of the 
laminar and buffer layers change slowly with the 
development of the plume. 

An interesting feature is the sensitivity of the 
concentration and temperature profiles to the 
power p in ~2 = @J/K in the wall-controlled 
turbulent region [shown for the former in 
Fig. l(a) and Fig. l(b)]. Whilefor’thetemperature 
profiles the best fit occurred for p = 0.8, values 
between 0.6 and 0.7 appear best for the concen- 
tration profiles (as against the classical Prandtl 
value of unity). The demonstrated differences in 
the sensitivity to the viscous wall conditions and 
in the values of p suggest that the effective 
transport of scalar properties in the same tur- 
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bulent layer may depend on the boundary 
conditions of the scalar field. In other words the 
eddy-conductivity in a low-speed boundary 
layer may depend weakly on whether there is 
heat transfer or not at the wall. 

Equation (20), with X = d and ,8 = 1, also 
approximates the eddy viscosity of the turbulent 
layer itself over relatively short distances over 
which the exponent n in the first approximation 
of the velocity profile can be considered a 
constant. The function •~a@) which corresponds 
to the boundary layer of Johnson in the region 
of intermediate development of the heated 
plume comprises five analytical segments dis- 
played in Fig. 4. The x development of the 
laminar and the buffer layers over this distance 
has little influence on the velocity profiles and 
most of the layer could be characterized well by 
Clauser’s constant value of eddy viscosity 
(Fig. 4). This approximation to ~~2 has the 
character of a final-zone approximation. 

Although equation (20) applies to both the 
intermediate and the final zones of similarity, a 
clear analytical and physical distinction between 
the two resulting approximations was made in 
the process of its derivation because the postu- 
late of quasi-similarity is not valid in the inter- 
vening region. Thus, equation (20) should 
provide a good basis for comparison of the 
diffusivity values within the intermediate zone 
and a somewhat less reliable basis for comparison 
of diffusivity values in the intermediate and the 

final zones of the same plume. For such com- 
parisons over limited x regions, rather general 
conclusions were reached in [13] in terms of the 
approximations h = XOX~ and d = do (x + L)‘, 
where the ratio r/m is generally expected to lie 
between 0.9 and 1. In particular, these approxi- 
mations furnish a good physical measure for ,8, 
namely? X/(X + L). 

The evidence in [13] for expecting effective 
turbulent Prandtl and Schmidt numbers in 
excess of those encountered in fully mixed 
layers @ = l), on the basis of postulates of 
intermediate zone quasi-similarity appeared 
rather conclusive, especially near the beginning 
of the zone. In absence of a dynamic effect of 
the heating or the mass transfer on the turbulent 
structure of the boundary layer, the “mixing 
motions” in the intermediate zone could not be 
distinguished from those in a boundary layer 
heated uniformly from the leading edge at the 
same Reynolds number. Hence mixing-length 
hypotheses would lead to identical Prt and to a 
contradiction with the experimental evidence. 
Analytically, the eddy-coefficient hypothesis, 
suggested by the property of quasi-similarity, 
provides a more consistent picture primarily 
because the consequent equations indicate that 
the scalar diffusivities vary longitudinally almost 

t Reynolds et al. [3] based their correlations on the 
parameter 1 - p = L/(L i- x) both in the regions of 
similarity as well as in the non-similar initial and transi- 
tional regions. 

0.3 
0 HINZE-KLEBANOFF 4 

x HINLE-TOhNSEND '4 
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FIG. 4. Eddy viscosity variation across the boundary layer. 
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as the first power of the growing scale of the 
plume. X(x), not unlike Prandtl’s second 
hypothesis for 6 in free flows. Since the experi- 
mentally inferred lateral variations of the eddy 
conductivity and of the eddy viscosity were the 
same. it would appear that, at a fixed 4’ (or y/S) 
in the plume, the correlation Yi> is decreasing 
slower with .X than the mean temperature 
gradient, CT/+. 

As mentioned at the outset, the sharpness of 
the thermal intermittency observed by Johnson 
testifies to a role of the large eddies in the 
transport mechanism. In fact, the height at 
which the intermittency of 50 per cent occurs is a 
good measure of the net lateral travel within the 
largest eddies carrying the heat signature in the 
convection time available since the passage by 
the station x = 0. At x I== 47 in, i.e. in excess of 
12 boundary-layer thicknesses S downstream of 
.Y -- 0, this height is 0.41 S. According to the 
combined but still incomplete evidence at Favre 
cf nl. [ 141, Grant [ 151, Willmarth and Wooldridge 
1161, and Kline and Runstadler [17], a typical 
large eddy with an x-scale on the order of S 
would decay in one-half to one-third the con- 
vective distance of 12 6. (Both lateral motions of 

such eddies have considerably finer scales, 
especially near the wall.} Even if the transport 
were effected primarity by these large eddies, it 
would require a co-operative action of several 
successive and spanwise adjacent eddies,fActually, 
the net transport to y = 0.4 1 6 == 40 h was 
very small, resulting in a temperature increment 
of ,& of total AT. Consequently, the significant 
transport in the region which determined the 
basic shape of the temperature profile (and hence 
of EZ), y < 25 h, must.have been amply modu- 
lated by the profuse hierarchy of smaller eddies 
of all sizes. 

In fact, from Klebanoff’s u spectra (e.g. Fig. 7- 
23 of Hinze [4]), it is known that the longitudj~al 
scale of the eddies reaching below y < 0.05 S 
steadily decreases. Furthermore, Grant [ 15J in his 
more extensive correlation studies finds evidence 
of a different complex of small eddies near the 
wall, y < 0.15 S or so. Indeed, Johnson’s com- 
ments on the finer scale (“burst”) of the warmer 
outward moving fluid and the lesser perturba- 
tion of the relatively larger-scale (cool) P 
~uctuations, penetrating into the warm plume, 
could be interpreted as partial corroboration of 
Grant’s inference of narrow “outward mixing 
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jets”, and Lilley’s [18] additional inference of 
larger-scale, somewhat less turbulent “return 
flow”. These various observations seem to 
indicate that the early hot-wire experience with 
free turbulent flows may have led to an exagger- 
ated anticipation of the importance of transport 
by the largest eddies in a turbulent layer in 
presence of a wall. While these eddies un- 
doubtedly contribute, apparently ample smooth- 
ing action and randomization on finer scales 
takes place. It is also clear that further experi- 
ments on the structure of the turbulent bound- 
ary layer are needed and that configurations 
with plumes of scalar tracers offer special 
promise. 

CONCLUSIONS 

The experimental evidence of Poreh and 
Cermak [l], and that of Johnson [2a], both 
investigations exhibiting quasi-similarities in 
diffusive plumes, have been examined rather 
critically to see whether these quasi-similarities 
have a counterpart within the framework of a 
model of the turbulent fields utilizing the concept 
of eddy diffusivities. The following statements 
appear to be justified. 

1. The ammonia diffusion experiments of 
Poreh and Cermak [l], specifically the observed 
shape of quasi-similar concentration profiles in 
the intermediate and final zones, are consistent 
with the concept of eddy diffusivity, viewed as a 
property of quasi-similar fields. Johnson’s 
temperature profiles [2a] are similarly consistent. 
The nature of these quasi-similarities in presence 
of viscous and inertial scales, in addition to the 
plume scale, A, has been clarified: as the addi- 
tional scales vary with respect to A, the profiles 
can be made to collapse into a narrow band 
because of a number of compensating effects. 

2. When the velocity profiles are simulated 
locally by power profiles, this concept of eddy 
diffusivity leads to the experimentally observed 
result that in the first approximation the 
ammonia plume width X(x) grows independently 
of the free stream velocity U,. The exponent of 
the predicted variation for A, x0+6 to xOs75, is 
somewhat higher than that observed experi- 
mentally, namely x0.8. 

3. The double quasi-similarity (in the inter- 
mediate and final zones) appears to be brought 

about by the gradual development of the scalar 
field in regions of different turbulent properties. 
Because of the impermeability of the wall, the 
concentration profiles are less sensitive to the 
direct viscous effects of the wall. However, in 
the intermediate zone the plume extends readily 
past the region near y/S = 0.2 where the 
analytical character of the diffusivity changes 
rather abruptly from an approximate fp varia- 
tion (0.6 < p < 0.8). This causes the profiles 
to shift and pivot within a narrow band of 
quasi-similarity. The profile characteristics in 
the final zone are governed essentially by a 
constant diffusivity in the core of the layer and a 
smooth intermittency cut-off. The behavior 
resembles that of shear-stress variations in a 
fully developed vertical layer. 

4. Johnson’s temperature profiles are essenti- 
ally dominated by wall effects which require a 
laminar, a buffer, and a fp (p - 0.8) region for 
adequate analytical simulation. The quasi- 
similarity with respect to y/h can be achieved in a 
limited (intermediate) range of plume develop- 
ment where an effective lateral heat impedance, 
approximated by l/q2(5), remains constant with 
x on the average. 

5. The diffusivity coefficients, when viewed as 
a property of quasi-similar fields rather than of 
the medium, depend upon the local characteristic 
scales of the diffusing fields, which change during 
the course of their development even in presence 
of more or less invariant eddy structure of the 
surrounding turbulent field. It follows that the 
so-called turbulent Prandtl or Schmidt numbers 
are not absolute numbers, but depend upon the 
relative development of the turbulent velocity 
field and the scalar diffusing field. The theoreti- 
cally inferred trends are in fair agreement with 
the Prandtl number values, locally in excess of 
unity, measured by Johnson [2] with a hot wire. 

6. The present study (which included partial 
consideration of the initial zone) demonstrated 
to the author that postulates of eddy diffusivity 
for scalar fields with a history of development 
different from that of the carrier turbulent field 
may lead to illusory engineering results unless 
supported by additional information concerning 
the behavior of these fields while mixing-length 
hypotheses fail altogether. On the other hand, 
evidence such as that of the strong defect law, 
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utilized by Clauser [6]for prediction of boundary- 
layer characteristics over widest ranges of 7 
Reynolds number, and that of the present ’ 
empirical narrow-band quasi-similarity in the 
intermediate zone of step-like plumes, can form 
a basis of fruitful eddy-diffusivity models. Their 8. 
interpretation in terms of the more recent results 
in turbulence, advocated by Liepmann [lo], not 

9 
’ 

only lends them more support, explains and lo. 
partially defines departures from stricter applica- 
bility, but in the present case also provides new 
ground for conjectures on the respective roles 

11 
* 

of small and large eddies in turbulent transport 
processes. 

12. 

ACKNOWLEDGEMENT 

It is a pleasure to acknowledge the able assistance and 
critiaue of Miss Barbara Snvder. Additional information 

13. 

on the computing techniques and results was compiled 
by her in the Appendix to reference 13. 

1. 

2. 

3. 

4. 

5. 

6. 

14. 
REFERENCES 

M. POREH and J. E. CERMAK, Study of diffusion from 
a line source in a turbulent boundary layer, submitted 
to I& J. Heat Muss Transfer 7,1083-1095 (1964). 
D. S. JOHNSON, Turbulent heat transfer in a boundary 15. 
layer with discontinuous wall temperature, (a) Office 
of Scientific Research Tech. Note 55-289 (D. E. 16. 
Thesis, Johns Hopkins University), (b) (abridged) J. 
Appl. Mech. 26, Series E, 325 (1959), (c) ibid., 24, 
Series E, 2 (1957). 
W. C. REYNOLDS, W. M. KAYS and S. J. KLINE, 
Heat transfer in the turbulent incompressible 
boundary layer, II, Step wall-temperature distri- 
bution NASA Memo 12-2-58 W (1958). 
J. 0. HINZE. Turbulence. Chanters 5 and 7. McGraw- 17. 
Hill, New ?ork (1959).’ _ 
G. B. SCHUBAUER and C. M. TCHEN, Turbulent Flow, 
Vol. 5 of High-Speed Aerodynamics and Jet Pro- 18. 
pulsion, especially pp. 97-103, 143-146, 164-171. 
Princeton University Press (1959). 
F. H. CLAUSER, The Turbulent Boundary Luycr, 

Vol. IV, Advances in Applied Mechanics. Academic 
Press (1956). 
W. C. REYNOLDS, W. M. KAYS and S. J. KLINE, 
Heat transfer in the turbulent incompressible 
boundary layer, constant wall temperature, NASA 
Memo 12-l-58 W(1958). 
A. A. TOWNSEND, The Structure of Turbulent Shear 
Flow. Cambridge University Press (1956). 
F. ELIAS, Z. Angew. Math. Mech. 9, 434 (1929); 
10, 1 (1930). 
H. W. LIEPMANN, Free turbulent flows, MPcanique de 
la Turbulence, Marseille, 1961, Publ. Centre National 
de la Recherche Scientifique, Paris (1962). 
M. V. MORKOVIN. Effects of comoressibilitv on 
turbulent flows, M&an&e de la Turbulkce, Marseille, 
1961, Publ. Centre National de la Recherche Scien- 
tifique, Paris (1962). 
E. R. G. ECKERT, Introduction to the Transfer of 
Heat and Mass, p. 119. McGraw-Hill, New York 
(1950). 
M. V. MORKOVIN, On eddy diffusivity and diffusion 
experiments in turbulent boundary layers, Martin 
Company, Baltimore, Md., Res. Report No. 42, 
October (1963). 
A. J. FAVRE, J. J. GAVIGLIO and R. DUMAS, Space- 
time double correlations and spectra in a turbulent 
boundary layer, J. FIuid Mech. 2,313 (1957), Further 
space-time correlations of velocity in a turbulent 
boundary layer, J. Fluid Mech. 3, 344 (1958). 
H. L. GRANT, The large eddies of turbulent motion, 
J. Fluid Mech. 4, 149 (1958). 
W. W. WILLMARTH and C. E. WOOLDRIDGE, 
Measurements of the fluctuating pressure at the wall 
beneath a thick turbulent boundary layer, J. Fhrirl 
Mech. 14, 187 (1962); Measurements of the correla- 
tion between the fluctuating velocities and the 
fluctuating wall pressure in a thick turbulent boundary 
layer, Univ. of Mich. Aero. Lab. Rept. ORA 
02920-2-T, April (1962). 
S. J. KLINE and P. W. RUNSTADLER, Visual studies of 
the wall layers in the turbulent boundary layer, 
J. Appl. Mech. 26, 166 (1959). 
G. M. LILLEY, Wall pressure fluctuations under 
turbulent boundary layers at subsonic and super- 
sonic speeds, College of Aeronautics, Cranfield, 
Note No. 140, March (1963). 

R&sum&La preuve expkrimentale par Poreh et Cermak [l] de l’cxistence de deux zones de quasi- 
similitude dans une nappe diffusant & partir d’une source lin&aire 6 la paroi d’une couche turbulente 
Ctablie est examinCe avec soin pour la rendre compatible avec les concepts de diffusivit6 turbulente. 
La quasi-similitude des profils de temperature moyenne dans une couche turbulente Ctablie, quelque 
distance en aval d’un saut de temptrature pariCtale, observte par Johnson [2a], [2c], est analysCe de la 
m&me faGon. On conclut que les diffusivitCs turbulentes considCr&es comme des propriCtCs de champs 
en quasi-similitude peuvent rendre compte des CaractCristiques observees de la couche se dCveloppant 
dans une autre couche aux erreurs experimentales pr&s. Quelques consCquences de ces notions sont 

examinCes. 

Zusammenfassung-Der experimentelle Nachweis von Poreh und Cermak [I] fiir zwei Bereiche von 
“Quasilhnlichkeit” in einer Feder, die von einer linearen Quelle an der Wand einer ausgebildeten 
Grenzschicht wegwandert, wird sorgfgltig auf einen Zusammenhang mit den Vorstellungen von einem 
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turbulenten Austausch tiberpriift. Die von Johnson [2a], [2c] beobachtete Quasiahnlichkeit einer aus- 
gebildeten turbulenten Schicht etwas unterhalb einer Stelle mit sprunghafter b;nderung der Wandtem- 
peratur wird genauso analysiert. Man kommt zu dem Schluss, dass ein turbulenter Stoffaustausch, 
wenn er als Eigenwert von quasi-%hnlichen Feldern betrachtet wird, die beobachteten Charakteristiken 
einer Grenzschicht, die in einer anderen Grenzschicht entsteht, bei der vorliegenden Beobachtungs- 

genaugikeit erkllren kann. Einige Folgerungen aus diesen Zusammenhlngen werden untersucht. 

~kKIiOTIll(lU-3KCIIepIIMeHTaJIbHO YCTaHOBJIeHHOe nOpIi II YepMaKOM [I] CyWeCTBOBaHMe 

;rByX 3OH KBaawIo~o6ns B CTpye, ~H~$IyH~HpyIO~eti OT JIIIIIeI"HOrO MCTOYHEIKa Ha CTeHKe B 

pa3BElTOM Typ6yJIeHTHOM CJIOe, TqaTeJIbHO paCCMOTpeH0 C TOWEM 3peHMH COBMeCTHMOCTH C 

IIOHfITHeM 0 Typ6yJIeHTHOt ~E44ly3IIII. 

AHanOrWIHO aHanI43IJpyeTcJs KBaanno~o6z%e CpeAHIIs TeMrIepaTypHbIX IIpO@HJIeti B pa3- 

BLITOM Typ6yJIeHTHOM CJIOe Ha HeKOTOpOM paCCTORHMH BHH3 II0 IIOTOKy OT TOqKEZ CKaYKa 

TexnepaTypH cTeHKn, HaGnwnasnIeecn A~OHCOHOM [aa], [2c]. MO~HO cgenaTb B~IBOA, ~TO 

Typ6yneHTHbIe @j@y3SUl, PaCCMaTpIIBaeMbIe KaK CBOkTBa KBa3IUIOAO6HbIX IIOJIet, MOryT 

y'I&ITbIBaTb na6Juo~aeMhIe XapaKTepIJCTMKH CJIOR, pa3nHBaIO~eJ?OCR B ,QpyrOM CJIOe, B IIpe- 

;leJIaX TOWIOCTII ~~aGzno~e~I~n"r. IkCJIeAOBaHbI HeKOTOpbIe C:Ie;lCTBHJI 3TLiX IIOKHTIIti. 

H.M.-K 


